Golden rice was created by Ingo Potrykus of the Institute of Plant Sciences at the Swiss Federal Institute of Technology, working with Peter Beyer of the University of Freiburg. The project started in 1992 and at the time of publication in 2000, golden rice was considered a significant breakthrough in biotechnology as the researchers had engineered an entire biosynthetic pathway.
Golden rice was designed to produce beta-carotene, a precursor of Vitamin A, in the part of rice that people eat, the endosperm. The rice plant can naturally produce beta-carotene, which is a carotenoid pigment that occurs in the leaves and is involved in photosynthesis. However, the plant does not normally produce the pigment in the endosperm since photosynthesis does not occur in the endosperm.
Golden rice was created by transforming rice with two beta-carotene biosynthesis genes:
psy (phytoene synthase) from daffodil (Narcissus pseudonarcissus)
crt1 from the soil bacterium Erwinia uredovora
(The insertion of a lyc (lycopene cyclase) gene was thought to be needed but further research showed that it is already being produced in wild-type rice endosperm.)
The psy and crt1 genes were transformed into the rice nuclear genome and placed under the control of an endosperm specific promoter, so that they are only expressed in the endosperm. The exogenous lyc gene has a transit peptide sequence attached so that it is targeted to the plastid, where geranylgeranyl diphosphate formation occurs. The bacterial crt1 gene was an important inclusion to complete the pathway, since it can catalyze multiple steps in the synthesis of carotenoids, while these steps require more than one enzyme in plants. The end product of the engineered pathway is lycopene, but if the plant accumulated lycopene the rice would be red. Recent analysis has shown that the plant's endogenous enzymes process the lycopene to beta-carotene in the endosperm, giving the rice the distinctive yellow colour for which it is named. The original Golden rice was called SGR1, and under greenhouse conditions it produced 1.6 µg/g of carotenoids.